--- layout: post title: Java8 新特性 tags: Java 新特性 categories: Java --- * TOC {:toc} # `1` 语言新特性 ## `1.1` Lambda 自动推测形参类型`e` ~~~ java Arrays.asList( "a", "b", "d" ).forEach( e -> System.out.println( e ) ); ~~~ 指定形参类型`e` ~~~ java Arrays.asList( "a", "b", "d" ).forEach( ( String e ) -> System.out.println( e ) ); ~~~ 方法体可以用`{}`包裹 ~~~ java Arrays.asList( "a", "b", "d" ).forEach( e -> { System.out.print( e ); System.out.print( e ); } ); ~~~ **effectively final**,lambda引用的对象会自动转为final ~~~java String separator = ","; Arrays.asList( "a", "b", "d" ).forEach( ( String e ) -> System.out.print( e + separator ) ); ~~~ ## `1.2` FunctionalInterface 函数接口就是只具有一个方法的普通接口,这样的接口,可以被隐式转换为lambda表达式, 然而,一旦在此接口中增加了方法,它将不再是函数接口,使用lambda时也将编译失败。 `@FunctionalInterface`注解可以约束接口的行为,**默认方法**与**静态方法**不会影响函数接口 ~~~java @FunctionalInterface public interface Functional { void method(); } ~~~ ## `1.3` 接口默认方法 ~~~java public interface Defaulable { // Interfaces now allow default methods, the implementer may or // may not implement (override) them. default String notRequired() { return "Default implementation"; } } public class DefaultableImpl implements Defaulable { } public class OverridableImpl implements Defaulable { @Override public String notRequired() { return "Overridden implementation"; } } ~~~ ## `1.4` 接口静态方法 ~~~java private interface DefaulableFactory { // Interfaces now allow static methods static Defaulable create( Supplier< Defaulable > supplier ) { return supplier.get(); } } ~~~ ## `1.5` 方法引用 可以将类中既有 方法引用为lambda ~~~java public static class Car { public static Car create( final Supplier< Car > supplier ) { return supplier.get(); } public static void collide( final Car car ) { System.out.println( "Collided " + car.toString() ); } public void repair() { System.out.println( "Repaired " + this.toString() ); } public void follow( final Car another ) { System.out.println( "Following the " + another.toString() ); } } ~~~ ①构造器引用,语法为 `Class::new`,效果如同 `() -> new Class()` ~~~java Car car = Car.create( Car::new ); final List< Car > cars = Arrays.asList( car ); ~~~ ②静态方法引用,语法为 `Class::static_method`,效果如同 `p -> Class.static_method(p)` ~~~java cars.forEach( Car::collide ); ~~~ ③实例**无参**方法引用,语法为 `Class::method`,效果如同 `p -> p.method()`,该方法没有参数 ~~~java cars.forEach( Car::repair ); ~~~ ④实例**有参**方法引用,语法为 `instance::method` ,效果如同 `p -> instance.method(p)` ~~~java final Car police = Car.create( Car::new ); cars.forEach( police::follow ); ~~~ ⑤其他 ~~~java super::methName //引用某个对象的父类方法 TypeName[]::new //引用一个数组的构造器 ~~~ ## `1.6` 重复注解 相同的注解可以在同一地方声明多次,由 `@Repeatable` 提供此特性 ~~~java /** * @Repeatable( Filters.class ) * 表示该注解可重复使用,注解内容存放于Filters中 */ @Target( ElementType.TYPE ) @Retention( RetentionPolicy.RUNTIME ) @Repeatable( Filters.class ) public @interface Filter { String value(); }; /** * 存放@Filter注解的数组 * 该注解必须可以被访问 */ @Target( ElementType.TYPE ) @Retention( RetentionPolicy.RUNTIME ) public @interface Filters { Filter[] value(); } /** * 测试 */ @Filter( "filter1" ) @Filter( "filter2" ) public interface Filterable { } public static void main(String[] args) { //java8 提供的新方法,用于获取重复的注解 for(Filter filter : Filterable.class.getAnnotationsByType(Filter.class ) ) { System.out.println( filter.value() ); } } ~~~ ## `1.7` 类型推测 ~~~java public class TypeInfer { public static void main(String[] args) { final Value< String > value = new Value<>(); //value.setV(Value.defV()); //以前的写法 //Value.defV()返回类型被推测为String value.setV(Value.defV()); System.out.println(value.getV()); } } class Value< T > { private T o; public static T defV() { //若T不为Object,将会出现类型转换异常 return (T)new Object(); } public void setV(T o){ this.o = o; } public T getV(){ return o; } } ~~~ ## `1.8` 扩展注解 java8几乎可以为任何东西添加注解:局部变量、泛型类、父类与接口的实现以及方法异常 `ElementType.TYPE_USE`和`ElementType.TYPE_PARAMETER` 用于描述注解上下文 ~~~java public class AnnotationEX { @Retention( RetentionPolicy.RUNTIME ) @Target( { ElementType.TYPE_USE, ElementType.TYPE_PARAMETER } ) public @interface Anno { } public static class TestAEX< @Anno T > extends @Anno Object { public void method() throws @Anno Exception { } } public static void main(String[] args) { final TestAEX< String > holder = new @Anno TestAEX<>(); @Anno Collection< @Anno String > strings = new ArrayList<>(); } } ~~~ # `2` 类库新特性 ## `2.1` Optional ~~~java //将String对象装入Optional容器 Optional< String > stringOptional = Optional.ofNullable( null ); //判断容器中的String对象是否不为空 System.out.println(stringOptional.isPresent() ); //orElseGet通过lambda产生一个默认值 System.out.println(stringOptional.orElseGet( () -> "[default string]" ) ); //map对String对象进行转化,然后返回一个新的Optional实例, // 此处s为null,所以未转换直接返回了1个新Optional实例, // orElse直接产生一个默认值 System.out.println(stringOptional.map( p -> "[" + p + "]" ).orElse( "Hello Optional" ) ); ~~~ ## `2.2` Stream stream操作被分成了**中间操作**与**最终操作**两种 **中间操作**返回一个新的stream对象。中间操作总是采用惰性求值方式,运行一个像filter这样的中间操作实际上没有进行任何过滤,相反它在遍历元素时会产生了一个新的stream对象,这个新的stream对象包含原始stream中符合给定谓词的所有元素。 **最终操作**可能直接遍历stream,产生一个结果或副作用,如forEach、sum等。当最终操作执行结束之后,stream管道被认为已经被消耗了,没有可能再被使用了。在大多数情况下,最终操作都是采用及早求值方式,及早完成底层数据源的遍历。 ~~~java public enum Status { OPEN, CLOSED }; public class Task { private final Status status; private final Integer points; Task( final Status status, final Integer points ) { this.status = status; this.points = points; } public Integer getPoints() { return points; } public Status getStatus() { return status; } @Override public String toString() { return String.format( "[%s, %d]", status, points ); } } ~~~ ~~~java public static void main(String[] args){ Collection< Task > tasks = Arrays.asList( new Task( Status.OPEN, 5 ), new Task( Status.OPEN, 13 ), new Task( Status.CLOSED, 8 ) ); long totalPointsOfOpenTasks = tasks .stream() .filter( task -> task.getStatus() == Status.OPEN ) .mapToInt( Task::getPoints ) .sum(); System.out.println( "Total points: " + totalPointsOfOpenTasks ); } ~~~ 原生并行处理 ~~~java double totalPoints = tasks .stream() .parallel() .map( task -> task.getPoints() ) // or map( Task::getPoints ) .reduce( 0, Integer::sum ); System.out.println( "Total points (all tasks): " + totalPoints ); ~~~ 分组 ~~~java final Map< Status, List< Task >> map = tasks .stream() .collect( Collectors.groupingBy(Task::getStatus) ); System.out.println( map ); ~~~ 权重 ~~~java //计算权重 final Collection< String > result = tasks .stream() // Stream< String > .mapToInt( Task::getPoints ) // IntStream .asLongStream() // LongStream .mapToDouble( points -> points / totalPoints ) // DoubleStream .boxed() // Stream< Double > .mapToLong( weigth -> ( long )( weigth * 100 ) ) // LongStream .mapToObj( percentage -> percentage + "%" ) // Stream< String> .collect( Collectors.toList() ); // List< String > System.out.println( result ); ~~~ ## `2.3` Date/Time API 时间格式均为 **ISO-8601** `Clock` ~~~java //日期时间都有,有时区 Clock clock = Clock.systemUTC(); System.out.println(clock.instant()); System.out.println(clock.millis()); ~~~ `LocalDate` ~~~java //只有日期没有时间 LocalDate localDate = LocalDate.now(); LocalDate localDateFromClock = LocalDate.now(clock); System.out.println(localDate); System.out.println(localDateFromClock); ~~~ `LocalTime` ~~~java //只有时间没有日期 LocalTime localTime = LocalTime.now(); LocalTime localTimeFromClock = LocalTime.now(clock); System.out.println(localTime); System.out.println(localTimeFromClock); ~~~ `LocalDateTime ` ~~~java //日期时间都有,没有时区 LocalDateTime localDateTime = LocalDateTime.now(); LocalDateTime localDateTimeFromClock = LocalDateTime.now(clock); System.out.println(localDateTime); System.out.println(localDateTimeFromClock); ~~~ `ZonedDateTime` ~~~java //指定时区,只有ZonedDateTime,没有ZoneDate与ZoneTime ZonedDateTime zonedDateTime = ZonedDateTime.now(); ZonedDateTime zonedDateTimeFromClock = ZonedDateTime.now(); ZonedDateTime zonedDateTimeFromZone = ZonedDateTime.now(ZoneId.of( "America/Los_Angeles" )); System.out.println(zonedDateTime); System.out.println(zonedDateTimeFromClock); System.out.println(zonedDateTimeFromZone); ~~~ `Duration` ~~~java //计算时间差 LocalDateTime from = LocalDateTime.of( 2014, Month.APRIL, 16, 0, 0, 0 ); LocalDateTime to = LocalDateTime.of( 2015, Month.APRIL, 16, 23, 59, 59 ); Duration duration = Duration.between( from, to ); System.out.println( "Duration in days: " + duration.toDays() ); System.out.println( "Duration in hours: " + duration.toHours() ); ~~~ ## `2.4` Nashorn `javax.script.ScriptEngine`的另一种实现,允许js与java相互调用 ~~~java ScriptEngineManager manager = new ScriptEngineManager(); ScriptEngine engine = manager.getEngineByName( "JavaScript" ); System.out.println( engine.getClass().getName() ); System.out.println( "Result:" + engine.eval( "function f() { return 1; }; f() + 1;" ) ); ~~~ ## `2.5` Base64 Base64编码已经成为Java8类库的标准 ~~~java final String text = "Base64 finally in Java 8!"; final String encoded = Base64 .getEncoder() .encodeToString( text.getBytes(StandardCharsets.UTF_8 ) ); System.out.println( encoded ); final String decoded = new String( Base64.getDecoder().decode( encoded ), StandardCharsets.UTF_8 ); System.out.println( decoded ); ~~~ >其他编码器与解码器 > >`Base64.getUrlEncoder() Base64.getUrlDecoder()` > >`Base64.getMimeEncoder() Base64.getMimeDecoder()` ## `2.6` 并行(parallel )数组 **并行数组**操作可以在多核机器上极大提高性能 ~~~java long[] arrayOfLong = new long [ 20000 ]; //对arrayLong所有元素随机赋值 Arrays.parallelSetAll(arrayOfLong, index -> ThreadLocalRandom.current().nextInt(1000000)); //打印前10个元素 Arrays.stream( arrayOfLong ).limit( 10 ).forEach( i -> System.out.print( i + " " ) ); System.out.println(); //对arrayLong数组排序 Arrays.parallelSort( arrayOfLong ); //打印前10个元素 Arrays.stream( arrayOfLong ).limit( 10 ).forEach( i -> System.out.print( i + " " ) ); System.out.println(); ~~~ ## `2.7` 并发(concurrency) * java.util.concurrent.`ConcurrentHashMap`类中加入了一些新方法来支持聚集操作 * java.util.concurrent.`ForkJoinPool`类中加入了一些新方法来支持共有资源池(common pool) * java.util.concurrent.locks.`StampedLock`类提供基于容量的锁,这种锁有三个模型来控制读写操作 * java.util.concurrent.atomic包中增加新类:
`DoubleAccumulator`,
`DoubleAdder`,
`LongAccumulator`,
`LongAdder` # `3` 编译器新特性 ## `3.1` 参数名 方法参数的名字保留在Java字节码中,并且能够在运行时获取它们 编译时需要加上 `–parameters` ,**maven-compiler-plugin** 可进行配置 ~~~java public class ParameterNames { public static void main(String[] args) throws Exception { Method method = ParameterNames.class.getMethod( "main", String[].class ); for( final Parameter parameter: method.getParameters() ) { System.out.println( "Parameter: " + parameter.getName() ); } } } ~~~ # `4` 新的Java工具 ## `4.1` Nashorn引擎 `jjs` 它接受一些JavaScript源代码为参数,并且执行这些源代码 创建 **func.js** 文件 ~~~javascript function f() { return 1; }; print( f() + 1 ); ~~~ ~~~bash jjs func.js ~~~ ## `4.2` 类依赖分析器 `jdeps` 它可以显示Java类的包级别或类级别的依赖,它接受一个.class文件,一个目录,或者一个jar文件作为输入。jdeps默认把结果输出到系统输出(控制台)上。 ~~~bash jdeps org.springframework.core-3.0.5.RELEASE.jar ~~~ 如果依赖不在classpath中,就会显示 **not found** # `5` JVM新特性 **PermGen**空间被移除了,取而代之的是**Metaspace**(JEP 122)。JVM选项**-XX:PermSize**与**-XX:MaxPermSize**分别被**-XX:MetaSpaceSize**与**-XX:MaxMetaspaceSize**所代替